Genetic reinforcement learning through symbiotic evolution for fuzzy controller design
نویسندگان
چکیده
An efficient genetic reinforcement learning algorithm for designing fuzzy controllers is proposed in this paper. The genetic algorithm (GA) adopted in this paper is based upon symbiotic evolution which, when applied to fuzzy controller design, complements the local mapping property of a fuzzy rule. Using this Symbiotic-Evolution-based Fuzzy Controller (SEFC) design method, the number of control trials, as well as consumed CPU time, are considerably reduced when compared to traditional GA-based fuzzy controller design methods and other types of genetic reinforcement learning schemes. Moreover, unlike traditional fuzzy controllers, which partition the input space into a grid, SEFC partitions the input space in a flexible way, thus creating fewer fuzzy rules. In SEFC, different types of fuzzy rules whose consequent parts are singletons, fuzzy sets, or linear equations (TSK-type fuzzy rules) are allowed. Further, the free parameters (e.g., centers and widths of membership functions) and fuzzy rules are all tuned automatically. For the TSK-type fuzzy rule especially, which put the proposed learning algorithm in use, only the significant input variables are selected to participate in the consequent of a rule. The proposed SEFC design method has been applied to different simulated control problems, including the cart-pole balancing system, a magnetic levitation system, and a water bath temperature control system. The proposed SEFC has been verified to be efficient and superior from these control problems, and from comparisons with some traditional GA-based fuzzy systems.
منابع مشابه
Symbiotic Evolution Genetic Algorithms for Reinforcement Fuzzy Systems Design
The advent of fuzzy logic controllers has inspired the allocation of new resources for the possible realization of more efficient methods of control. In comparison with traditional controller design methods requiring mathematical models of the plants, one key advantage of fuzzy controller design lies in its model-free approach. Conventionally, the selection of fuzzy if-then rules often relies h...
متن کاملTwo-Strategy reinforcement group cooperation based symbiotic evolution for TSK-type fuzzy controller design
This paper proposes a TSK-type fuzzy controller (TFC) with a two-strategy reinforcement group cooperation based symbiotic evolution (TSR-GCSE) for solving various control problems. The TSR-GCSE proposes the two-strategy reinforcement (TSR) signal designed to improve the performance of the traditional reinforcement signal designed. Moreover, the TSR-GCSE is different from the traditional symbiot...
متن کاملReinforcement learning based feedback control of tumor growth by limiting maximum chemo-drug dose using fuzzy logic
In this paper, a model-free reinforcement learning-based controller is designed to extract a treatment protocol because the design of a model-based controller is complex due to the highly nonlinear dynamics of cancer. The Q-learning algorithm is used to develop an optimal controller for cancer chemotherapy drug dosing. In the Q-learning algorithm, each entry of the Q-table is updated using data...
متن کاملEecient Reinforcement Learning through Symbiotic Evolution
This article presents a novel reinforcement learning method called SANE (Symbiotic, Adaptive Neuro-Evolution), which evolves a population of neurons through genetic algorithms to form a neural network capable of performing a task. Symbiotic evolution promotes both cooperation and specialization, which results in a fast, eecient genetic search and prevents convergence to subopti-mal solutions. I...
متن کاملReinforcement Hybrid Evolutionary Learning for TSK-Type Neuro-Fuzzy Controller Design
This paper proposes a recurrent TSK-type neuro-fuzzy controller (TNFC) with reinforcement hybrid evolutionary learning algorithm (R-HELA). The proposed R-HELA combines the compact genetic algorithm (CGA) and the modified variable-length genetic algorithm (MVGA) to perform the structure/parameter learning for constructing the TNFC dynamically. The evolution of a population consists of three majo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
دوره 30 2 شماره
صفحات -
تاریخ انتشار 2000